The Norcure realalkalisation system is an electrochemical treatment for reinstating passive layer around steel reinforcing.

Description of alkalisation

Norcure realalkalisation is a non-destructive treatment which:

- Restores the alkalinity of carbonated concrete; and
- Reinstates the passivity of steel reinforcement
- Increases structural service life

Realalkalisation is carried out by applying a safe electric current between the reinforcement in the concrete and a temporary, externally mounted anode mesh. During treatment, an alkaline electrolyte solution is transported into the concrete by a process of electro-osmosis, increasing the alkalinity of the cover zone. At the same time, electrolysis at the reinforcement surface produces a high pH environment, which repassivates the steel reinforcement.

Advantages

Norcure realalkalisation offers major advantages over other methods of concrete repair.

- The cause of reinforcement corrosion is addressed and removed
- The success of the treatment is easily provable by simple tests
- All rebar within the realalkalised treatment zone is repassivated
- The non-destructive nature of the treatment which means:
 - major time-savings
 - no noise, dust or environmental pollution
 - no need for expensive structural support
 - no risk of inducing micro-cracks
 - minimal disturbance to structure users or residents
- The realalkalisation process is silent
- The need for permanent electronic monitoring is eliminated
- Architectural and exposed aggregate finishes can be maintained

Mechanisms of realalkalisation

[Diagram showing the process of realalkalisation with anode, electrolyte, concrete, and reinforcement.]

- **Anode**
- **Electrolyte**
- **Concrete**
- **OH⁻**
- **Reinforcement**
General technical specification

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anode</td>
<td>Conductive mesh temporarily mounted on concrete surface</td>
</tr>
<tr>
<td>Cathode</td>
<td>Existing steel reinforcement</td>
</tr>
<tr>
<td>Electrolyte</td>
<td>Norcure ERA electrolyte, an aqueous pH controlled solution</td>
</tr>
<tr>
<td>Current density</td>
<td>Typically 1 A/m² of concrete surface</td>
</tr>
<tr>
<td>Treatment time</td>
<td>Typically 7 - 10 days although dependent upon steel and concrete density</td>
</tr>
<tr>
<td>Applied voltage</td>
<td>Between 10 and 40 V DC</td>
</tr>
<tr>
<td>pH restoration</td>
<td>> 10</td>
</tr>
</tbody>
</table>

Preparation prior to treatment

- Any existing surface finishes shall be removed
- Any special characteristics of the concrete/structure shall be determined
- Any cracks, spalls and delaminations shall be located and repaired using an approved product from the Renderoc Xtra range
- All metallic features on the concrete surface shall be located and insulated, or removed
- The thickness of the concrete cover shall be determined and built up to a minimum of 25 mm if necessary
- Reinforcement continuity shall be examined and, if necessary, improved to give full continuity

Treatment

Installation

- Treatment sections shall be identified to ensure even current distribution within each section
- Electrical connections to the reinforcement shall be established
- Test locations for concrete sampling shall be determined and marked
- The chosen anode system, consisting of an anode mesh and an alkaline reservoir, shall be installed
- Electrical connections to the anode mesh shall be established
- The leads from the reinforcement shall be connected to the negative pole of the rectifier unit(s)
- The leads from the mesh shall be connected to the positive pole of the rectifier unit(s)
- A voltage shall be adjusted to give approximately 1 Amp per square metre of concrete surface
- Current, voltage and efficiency of the anode system shall be controlled and, if necessary, adjusted throughout the treatment

Testing

- Concrete samples shall be taken at intervals to determine the degree of realkalisation
- Phenolphthalein indicator shall be used to measure the depth of realkalisation

Post-treatment

- When sufficient realkalisation is achieved, the anode system shall be removed and the concrete surface cleaned and allowed to dry
- If so required, the concrete surface shall be treated with an approved, compatible, protective/decorative coating system

© Denotes the trademark of Fosroc International Limited

Important note:

Fosroc products are guaranteed against defective materials and manufacture and are sold subject to its standard terms and conditions of sale, copies of which may be obtained on request. Whilst Fosroc endeavours to ensure that any advice, recommendation specification or information it may give is accurate and correct, it cannot, because it has no direct or continuous control over where or how its products are applied, accept any liability either directly or indirectly arising from the use of its products whether or not in accordance with any advice, specification, recommendation or information given by it.